ELSEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

Li-ion diffusion kinetics in LiCoPO₄ thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering

J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda*, O. Yamamoto

Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan

ARTICLE INFO

Article history: Received 23 January 2009 Received in revised form 25 February 2009 Accepted 2 March 2009 Available online 14 March 2009

Keywords: LiCoPO₄ thin film Radio frequency magnetron sputtering Chemical diffusion coefficient Potentiostatic intermittent titration technique Electrochemical impedance spectroscopy

ABSTRACT

LiCoPO₄ thin films were deposited on Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O₁₂ (LATSP) solid electrolyte by radio frequency magnetron sputtering and were characterized by X-ray diffraction and scanning electron microscope. The films show a (1 1 1) preferred orientation upon annealing and are chemically stable with LATSP up to 600 °C in air. An all-solid-state Li/PEO₁₈-Li(CF₃SO₂)₂N/LATSP/LiCoPO₄/Au cell was fabricated to investigate the electrochemical performance and Li-ion chemical diffusion coefficients, D_{Li} , of the LiCoPO₄ thin films. The potential dependence of D_{Li} values of the LiCoPO₄ thin film was investigated by potentiostatic intermittent titration technique and was compared with those of the LiFePO₄ thin film. These results showed that the intercalation mechanism of Li-ion in LiCoPO₄ is different from that in LiFePO₄.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since pioneered by Amine et al. [1], olivine-type lithium cobalt phosphate, LiCoPO₄, has received great interest as a candidate cathode material for Li-ion batteries due to its high electrode potential of 4.8. V vs. Li/Li⁺ and it can be easily synthesized in air. LiFePO₄ only gives a 3.5 V electrode potential vs. Li/Li⁺ and must be synthesized in an inert atmosphere even though both belong to the olivinetype family [2,3]. The reported discharge capacity of LiCoPO₄ was less than $136 \text{ mA} \text{ hg}^{-1}$ [4,5], which is lower than the theoretical value of $167 \text{ mA} \text{ hg}^{-1}$. It seems that the low discharge capacity of LiCoPO₄ can be attributed to its low electronic conductivity of around 10^{-10} to 10^{-9} S cm⁻¹ [6,7]. Although the electronic conductivity can be significantly increased by introducing a second phase Co₂P by heat treating LiCoPO₄ in Ar, the discharge capacity of LiCoPO₄ is still unsatisfactory [6,8-10]. The discharge capacity of LiFePO₄ almost reached its theoretical value when measured in a quasi-open-circuit mode. As a result, the discharge capacity of LiCoPO₄ should not be simply controlled by its electronic conductivity.

As is generally accepted, the poor rate capability of LiFePO₄ is partly due to the slow diffusion through the LiFePO₄/FePO₄ twophase interface. Similarly, a two-phase model was also suggested by Bramnik et al. [11,12] using in situ and ex situ XRD to explain the Li extraction/insertion mechanism in LiCoPO₄. However, the XRD results showed that the crystalline phase was only a lithiumpoor phase; no "CoPO₄" phase was identified even though LiCoPO₄ was fully charged. In addition, two successive voltage plateaus were often observed during the charge of LiCoPO₄ [5,11–14]. Nakayama et al. [13] proved that it was not related to the irreversible side reactions and suggested that it might be due to an increase in electrochemical polarization around x = 0.3 in Li_{1-x}CoPO₄. Nevertheless, the exact mechanism for the two-plateau charge profile is still controversial, and in other cases, a one-plateau charge profile was reported [15–17]. LiFePO₄ exhibits only one-plateau charge profile in the two-phase region. Therefore, it is reasonable to infer that the different electrochemical behavior can be ascribed to the different Li-ion diffusion character.

In our present work, LiCoPO₄ thin films were prepared by radio frequency (RF) magnetron sputtering on Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O₁₂ (LATSP) solid electrolyte. Li-ion chemical diffusion coefficients were measured by potentiostatic intermittent titration technique (PITT) using the all-solid-state Li/PEO₁₈-Li (CF₃SO₂)₂N/LATSP/LiCoPO₄/Au cell. Eftekhari [16] showed that the \tilde{D}_{Li} values of LiCoPO₄ depended on the electrolyte used. The author also pointed out that the \tilde{D}_{Li} values measured at high voltages were not reliable due to the decomposition of the electrolyte. The LATSP used in our case is electrochemically stable at the high voltage. Therefore, the \tilde{D}_{Li} values of LiCoPO₄ were compared with those of LiFePO₄ to clarify the different Li-ion diffusion behaviors between LiCoPO₄ and LiFePO₄.

^{*} Corresponding author. Tel.: +81 59 231 9421; fax: +81 59 231 9419. *E-mail address:* takeda@chem.mie-u.ac.jp (Y. Takeda).

^{0378-7753/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2009.03.001

2. Experimental

The glass ceramics plates, $Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$ (0.15 mm in thickness), provided by OHARA Inc., were used as the solid electrolyte for the following experiments. LATSP was selected as the solid electrolyte because of its high Li-ion conductivity at room temperature [18,19]. LiCoPO₄ was prepared by the twostep solid-phase reactions using stoichiometric amount of Li₂CO₃, $Co(OCOCH_3)_2 \cdot 4H_2O$ and $(NH_4)_2HPO_4$ as the starting materials. The mixture was pressed into pellets and heated at 400 °C for 5 h. The reaction product was then ground and pressed again into pellets and headed at 800°C for 24 h. The LiCoPO₄ thin films $(8 \text{ mm} \times 8 \text{ mm})$ were deposited on the LATSP substrates $(10 \text{ mm} \times 10 \text{ mm})$ by RF magnetron sputtering using an Ulvac SCOTT-C3. The target (50 mm in diameter) used for sputtering was prepared by cold pressing LiCoPO₄ powder. LiCoPO₄ sputtering was carried out for 2h in pure Ar with a working pressure of 2Pa. The power used for LiCoPO₄ sputtering was 50 W, and the distance between the substrate and the target was 10 cm. Au was then deposited on the LiCoPO₄ by RF magnetron sputtering in pure Ar for 30 min as a current collector to form a LATSP/LiCoPO₄/Au electrode. The as-prepared electrodes were then annealed for 1 h in air to improve crystallization. The structure of the films was characterized by X-ray diffraction (XRD) using a RINT2000/PC diffractometer with Cu Ka radiation. The cross-sectional morphology of the films was observed by scanning electron microscopy (SEM) using a Hitachi S-4000.

An Li/PEO₁₈-Li(CF₃SO₂)₂N/LATSP/LiCoPO₄/Au cell was fabricated to investigate the electrochemical performance and Li-ion chemical diffusion coefficients of the LiCoPO₄ thin film. To prevent the reaction between Li and LATSP, a polyethyleneoxide (PEO)-based solid polymer film, PEO₁₈-Li(CF₃SO₂)₂N, was inserted between them. The polymer electrolyte was prepared by our previously reported method [20]. Galvanostatic cycling of the cells was carried out at a current density of 1 µA between 3.5 and 5 V. Cyclic voltammetry (CV) was performed between 3.5 and 5.1 V at a scan rate of 0.1 mV s⁻¹ using a Solartron 1287 electrochemical interface. For the PITT measurements, a potential step of 10 mV was applied and the current was recorded as a function of time. The procedure was repeated between 4.7 and 5 V. In this work, PITT method was chosen because it is a useful tool even for the electrode reactions involving a two-phase process [21]. All the electrochemical measurements were performed at 50 °C.

The electrochemical behavior of LiCoPO₄ was compared with that of LiFePO₄. The LiFePO₄ powder was prepared by solid-phase reactions of stoichiometric Li₂CO₃, FeC₂O₄·2H₂O and (NH₄)₂HPO₄ at 700 °C for 6 h in an Ar/H₂ mixture (2% H₂). The LiFePO₄ thin films were sputtered under the same conditions as LiCoPO₄ and were annealed for 1 h in the Ar/H₂ mixture (2% H₂). An Li/PEO₁₈-Li(CF₃SO₂)₂N/LATSP/LiFePO₄/Au cell was also fabricated to investigate the electrochemical performance and Li-ion chemical diffusion coefficients in the LiFePO₄ thin films. Galvanostatic cycling of the cells was carried out at 1 μ A between 2.8 and 4.1 V. CV was performed between 2.8 and 4.1 V at a scan rate of 0.1 mV s⁻¹. PITT measurements were conducted between 3.4 and 3.7 V with a 10 mV potential step. All the electrochemical measurements were also performed at 50 °C.

3. Results and discussion

The as-deposited film by sputtering is generally in an amorphous state. The film was annealed to improve the crystallization. Therefore, it is crucial to investigate the chemical stability between the sputtered film and the LATSP solid electrolyte during the heat treatment. Previous studies showed that some electrode materials, such as the LiMn₂O₄ thin film (up to 600 °C) [22], the Li₄Ti₅O₁₂ thin film

Fig. 1. XRD patterns of the LiCoPO4 thin films on LATSP annealed at different temperatures and on Au annealed at 600 $^\circ\text{C}$ in air.

(up to $600 \circ C$) [23], the Li₃Fe₂(PO₄)₃ and LiCoPO₄ powders (up to 900–1000 °C) [5], showed chemical stability toward NASICON-type solid electrolyte. As shown in Fig. 1, the LiCoPO₄ thin film shows a sharp peak at $2\theta = 25.5^{\circ}$ by annealing at 600 °C in air, which is indexed to the (111) diffraction peak of LiCoPO₄. The LiCoPO₄ thin film deposited on LATSP exhibits a (111) preferred orientation upon annealing. The LiCoPO₄ thin film was also sputtered on Au substrate for comparison. The LiCoPO₄ thin film on Au, which was sputtered under the same conditions and annealed at 600 °C, shows similar XRD patterns as the LiCoPO₄ powder. It suggests that the orientation of the LiCoPO₄ thin film depends on the substrate used. When annealed at 700 °C, the peak becomes broad and is slightly shifted to a high angle, indicating some interfacial reactions take place between LiCoPO₄ and LATSP. At 800 °C, a new peak at around $2\theta = 19^{\circ}$ appears, suggesting that the interfacial reactions become significant at elevated temperature. The new peak is suggested to be (003) peak of LiCoO₂. The LATSP/LiCoPO₄/Au electrodes annealed at 600 °C were used in the following electrochemical experiments. The interfacial stability between LiFePO₄ and LATSP upon annealing in the Ar/H_2 mixture (2% H_2) was also checked. As shown in Fig. 2,

Fig. 2. XRD patterns of the LiFePO₄ thin films on LATSP annealed at different temperatures in an Ar/H_2 mixture (2% H_2).

Fig. 3. Cross-sectional SEM image of the LiCoPO4 thin film on LATSP after annealing at 600 $^\circ\text{C}$ for 1 h.

the LiFePO₄ film is chemically stable toward LATSP up to 550 °C. At 600 °C, some unknown peaks appear, indicating chemical reactions take place between LiFePO₄ and LATSP. Thus, we used the LATSP/LiFePO₄/Au electrodes annealed at 550 °C in the following electrochemical experiments.

Fig. 3 shows the cross-section SEM image of the LiCoPO₄ thin film sputtered on the LATSP followed by heating at 600 °C for 1 h. Note that the film is dense and the thickness is estimated to be about 0.7 μ m. The relative density of the film was estimated to be about 80% by the weight gain and the density of the LiCoPO₄.

Fig. 4(a) shows the charge and discharge profiles of the LiCoPO₄ thin film for the first three cycles. It is clear that the film exhibits different charge profiles between the first and following cycles; the first charge curves give only a plateau at around 4.9 V vs. Li/Li⁺, while the second and the third ones give two successive plateaus at around 4.8 and 4.9 V, respectively. Similar behavior was observed by Nagata et al. [5] and Bramnik et al. [12], where the composite electrodes composed of LiCoPO₄, acetylene black and polymer binder were used. The structural rearrangement in LiCoPO₄ may take place during the first charge process of the LiCoPO₄ thin film. Note that only a sloping line can be observed between 4.6 and 4.9 V during the discharge process, indicating that the mechanisms for Li-ion re-insertion into "CoPO₄" and extraction from LiCoPO₄ thin film. Note that in addition to an obvious peak at 4.95 V, a small shoulder

Fig. 4. Charge and discharge profiles at 1 μ A (a) and CV at a scan rate of 0.1 mV s⁻¹ (b) of the LiCoPO₄ thin film annealed at 600 °C for 1 h.

Fig. 5. Charge and discharge profiles at 1 μ A (a) and CV at a scan rate of 0.1 mV s⁻¹ (b) of the LiFePO₄ thin film annealed at 550 °C for 1 h.

Fig. 6. Potential dependence of Li-ion chemical diffusion coefficients in the cycled LiCoPO₄ thin film by PITT.

at around 4.8 V is observed as indicated by the arrow. The small shoulder corresponds to the first charge plateau in Fig. 4(a). The asymmetry between the cathodic and anodic CV plots implies that the Li-ion diffusion in LiCoPO₄ thin film obeys a different mechanism between charge and discharge processes. In contrast, both the charge–discharge curves and the CV plots of the LiFePO₄ thin film show that the process of Li-ion extraction and re-insertion is reversible as shown in Fig. 5, even though the charge and discharge plateaus are not well developed due to the large interfacial resistance between LiFePO₄ and LATSP caused by annealing.

The Li-ion chemical diffusion coefficients, $\tilde{D}_{\rm Li}$, in the LiCoPO₄ thin film are measured with the help of PITT [21] method, in order to clarify the different electrochemical behaviors between LiCoPO₄ and LiFePO₄. As shown in Figs. 4 and 5(a), the voltage exhibits a sloping profile with time rather than a flat plateau expected for the typical charge–discharge curves of LiFePO₄ and LiCoPO₄. Therefore, we measured the chemical diffusion coefficients at a wide potential region for both the films. Fig. 6 shows the $\tilde{D}_{\rm Li}$ values as a function of the electrode potentials for the LiCoPO₄ thin films measured by PITT. For the LiCoPO₄ thin film cycled for three times between 3.5 and 5 V, the $\tilde{D}_{\rm Li}$ value decreases monotonously from 7×10^{-13} cm² s⁻¹ at 4.71 V to 6×10^{-14} cm² s⁻¹ at 5 V. The

Fig. 7. Comparison of Li-ion chemical diffusion coefficients in the cycled LiCoPO₄ and the cycled LiFePO₄ thin films by PITT.

decrease of \tilde{D}_{Li} value with the increasing electrode potentials means that the Li-ion diffusion is hindered by extracting Li-ion from LiCoPO₄, which can explain the relatively low capacity of LiCoPO₄. Theoretical calculation by first-principle method also showed that Li-ion diffusion coefficients in LiCoPO₄ is 4 orders higher than in "CoPO₄" [24].

Fig. 7 compares the \tilde{D}_{Li} values vs. voltage curves between the cycled LiCoPO₄ and the cycled LiFePO₄ thin films. The \tilde{D}_{Li} values of LiCoPO₄ decrease monotonously between 4.7 and 5.0 V even though they are higher than those of LiFePO₄. By contrast, the \tilde{D}_{Li} values of the LiFePO₄ thin film show slight change with cell voltage in the voltage range 3.5–3.7 V. These chemical diffusion results suggest that the lithium extraction mechanism in LiCoPO₄ is different from that in LiFePO₄; that is, Li_{1-x}CoPO₄ has multiphases, contrasted to two phases of LiFePO₄ and FePO₄.

4. Conclusions

LiCoPO₄ thin films were deposited on the LATSP electrolyte. The films show a (111) preferred orientation upon annealing and are chemically stable with LATSP up to 600 °C. The chemical diffusion coefficients of LiCoPO₄ were determined by PITT and were compared with those of LiFePO₄ on the LATSP. The \tilde{D}_{Li} value of cycled LiCoPO₄ decreases from 7×10^{-13} cm² s⁻¹ at 4.71 V to 6×10^{-14} cm² s⁻¹ at 5 V upon charging. On the other hand, the \tilde{D}_{Li} value of LiFePO₄ showed no significant dependence on the cell voltage in the range 3.5–3.7 V vs. Li/Li⁺. We could conclude that the Li-ion de-intercalation mechanism in LiCoPO₄ is different from that in LiFePO₄.

Acknowledgements

This research work was carried out under a collaboration program of Mie University and Genesis Research Institute, Nagoya, Japan. We thank OHARA Inc. for supplying the LATSP plates.

References

- [1] K. Amine, H. Yasuda, M. Yamachi, Electrochem. Solid-State Lett. 3 (2000) 178.
- [2] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
- [3] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1609.
- [4] J.M. Lloris, C. Pérez Vicente, J.L. Tirado, Electrochem. Solid-State Lett. 5 (2002) A234.
- [5] K. Nagata, T. Nanno, J. Power Sources 174 (2007) 832.
- [6] J. Wolfenstine, U. Lee, B. Poese, J.L. Allen, J. Power Sources 144 (2005) 226.
- [7] K. Tadanaga, F. Mizuno, A. Hayashi, T. Minami, M. Tatsumisago, Electrochemistry 71 (2003) 1192.
- [8] J. Wolfenstine, J. Power Sources 158 (2006) 1431.
- [9] J. Wolfenstine, J. Read, J.L. Allen, J. Power Sources 163 (2007) 1070.
- [10] S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, T. Konishi, A. Yoshino, J. Power Sources 97–98 (2001) 430.
- [11] N.N. Bramnik, K.G. Bramnik, T. Buhrmester, C. Baehtz, H. Ehrenberg, H. Fuess, J. Solid State Electrochem. 8 (2004) 558.
- [12] N.N. Bramnik, K.G. Bramnik, C. Baehtz, H. Ehrenberg, J. Power Sources 145 (2005) 74.
- [13] M. Nakayama, S. Goto, Y. Uchimoto, M. Wakihara, Y. Kitajima, Chem. Mater. 16 (2004) 3399.
- [14] J.L. shui, Y. Yu, X.F. Yang, C.H. Chen, Electrochem. Commun. 8 (2006)1087.
- [15] W.C. West, J.F. Whitacre, B.V. Ratnakumar, J. Electrochem. Soc. 150 (2003) A1660.
- [16] A. Eftekhari, J. Electrochem. Soc. 151 (2004) A1456.
- [17] M.V.V.M. Satya Kishore, U.V. Varadaraju, Mater. Res. Bull. 40 (2005) 1705.
- [18] J. Fu, Solid State Ionics 96 (1997) 195.
- [19] J. Fu, J. Am. Ceram. Soc. 80 (1997) 1901.
- [20] Q. Li, H.Y. Sun, Y. Takeda, N. Imanishi, J. Yang, O. Yamamoto, J. Power Sources 94 (2001) 201.
- [21] C.J. Wen, B.A. Boukamp, R.A. Huggins, W. Weppner, J. Electrochem. Soc. 126 (1979) 2258.
- [22] K. Dokko, K. Hoshina, H. Nakano, K. Kanamura, J. Power Sources 174 (2007) 1100.
- [23] K. Hoshina, K. Dokko, K. Kanamura, J. Electrochem. Soc. 152 (2005) A2138.
- [24] D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 7 (2004) A30.